
6
D I S A S S E M B LY A N D

D E C O M P I L A T I O N

In the previous chapter, we covered vari-
ous static analysis tools useful for triaging

unknown Mach-O binaries. However, if you
want to comprehensively understand a novel

Mac malware specimen, you’ll need a foundational
understanding of assembly code, as well as an ability
to leverage sophisticated binary analysis tools.

In this chapter, we’ll !rst discuss assembly language basics and then
move on to the static analysis approaches of disassembly and decompila-
tion. We’ll conclude by applying these analysis approaches with Hopper, a
popular reversing tool capable of reconstructing binary code in a human-
readable format. While Hopper and other advanced binary analysis tools
require an elementary understanding of low-level reversing concepts, and
may necessitate time-consuming analysis sessions, their abilities are invalu-
able. Even the most sophisticated malware specimen is no match for a
skilled analyst wielding these tools.

126 Chapter 6

Assembly Language Basics
As the source code of most compiled Mach-O malware generally isn’t
available, analysts must leverage tools that can understand the compiled
binary’s machine-level code and translate it back into something more read-
able: assembly code. This process is known as disassembling. Assembly is the
low-level programming language that gets translated directly into binary
instructions for the computer to execute. This direct translation means that
binary code within a compiled binary can later be directly converted back
into assembly. For example, on 64-bit Intel systems, the binary sequence
0100 1000 1000 0011 1100 0000 0010 1010 can be represented in assembly
code as add rax, 42 (which adds 42 to the RAX register).

At its core, a disassembler takes as input a compiled binary, such as a
malware sample, and performs this translation back into assembly code. Of
course, it’s then up to us to make sense of the provided assembly code. This
process of disassembling binary code and understanding the subsequent
assembly code is often what malware analysts are talking about when they
refer to reverse engineering a malicious sample.

In this section, we’ll cover various assembler basics by focusing on
x86_64, the 64-bit version of Intel’s x86 instruction set. We’ll also stick to the
standard Intel assembly syntax. Though Apple recently introduced Apple
Silicon, backed by the M1 system on a chip with an ARM-based processor,
the overwhelming majority of macOS malware is still compiled into x86_64
code. Moreover, all malware natively targeting the M1 architecture will be
distributed in the form of universal binaries for the foreseeable future. As
we discussed in Chapter 5, universal binaries contain multiple architecture-
speci!c binaries, such as those compatible with ARM and Intel. For the
purposes of reverse engineering malware, these binaries should be logically
identical, so an understanding of Intel’s x86_64 instruction set should suf-
!ce. Finally, many assembly language concepts are applicable to both Intel-
and ARM-based architectures. However, if you are interested in learning
more about the Apple M1’s ARM instruction set architecture as it pertains
to analyzing macOS malware, see my 2021 BlackHat presentation, “Arm’d
and Dangerous: Analyzing arm64 Malware Targeting macOS” or my white
paper on the same topic.1

Entire books have been written on the topics of assembly language and
reverse engineering. If you want to delve deeper, several excellent books
on the topic of disassembly and reverse engineering include Art of Assembly
Language, Hacker Disassembling Uncovered, and Reversing: Secrets of Reverse
Engineering.2

Here, I aim to provide only the necessary basics, taking some liberties
to simplify various ideas, as even a foundational understanding of such con-
cepts is suf!cient for becoming a competent malware analyst.

Registers
Registers are temporary storage slots on the CPU that can be referenced by
name. You can think of them as akin to variables in higher-level program-
ming languages.

Disassembly and Decompilation 127

The Intel x86_64 instruction set contains 16 general purpose 64-bit
registers, including the registers RAX, RCX, RDX, RBX, RSP, RBP, RDI, RSI, and R8
through R15. However, some of these registers are often used for speci!c
purposes. For example, the RSP and RBP registers are used to manage the
stack, a region of memory that facilitates function calls and the storage of
temporary, or local, variables. You’ll often encounter assembly instructions
accessing local variables via a negative offset from the RBP register. The
instruction set also contains non-general purpose registers, such as RIP,
which contains the address of the next instruction to execute.

We can reference many of the 64-bit general purpose registers by their
lower 8-bit, 16-bit, or 32-bit components, which you’ll sometimes come
across during binary analysis. For the registers without numbers in their
names, a two-letter abbreviation usually identi!es the 8- or 16-bit register
component. For the 32-bit component, the R is replaced with an E. As an
example, consider the 64-bit general purpose register RAX. Its 8-bit compo-
nent is named AL while its 16-bit component is named AX. Finally, its lower
32 bits are named EAX. For the R8–R15 registers, the B, D, and W suf!xes denote
the lower 8, 16, and 32 bits, respectively.

Assembly Instructions
Assembly instructions map to speci!c sequences of bytes that instruct the
CPU to perform an operation. All instructions contain a mnemonic, which
is a human-readable abbreviation of the operation. For example, the add
mnemonic maps to the binary code to perform, you guessed it, an addition
operation.

The majority of assembly instructions also contain one or more oper-
ands. These operands specify either the registers, values, or memory that
the instruction uses. A few mnemonics and example instructions are pro-
vided in Table 6-1.

Table 6-1: Mnemonics and Example Instructions

Mnemonic Example Description

add add rax, 0x100 Adds the second operand (0x100) to the first.

mov mov rax, 0x100 Moves the second operand (0x100) into the first.

jmp jmp 0x100000100 Jumps to (continues execution at) the address in the
operand (0x100000100).

call call rax Executes the subroutine specified at the address in
the operand (the RAX register).

Calling Conventions
You can often gain a fairly comprehensive understanding of a Mach-O binary
by studying the system API methods it invokes. For example, a malicious
binary that makes a call to a !le-writing API method, passing in both the con-
tents of a property list and path that falls within the ~/Library/LaunchAgents
directory, is likely persisting as a launch agent. Thus, we often don’t need

128 Chapter 6

to spend hours understanding all the assembly instructions in a binary.
Instead, we can focus on the instructions located near API calls in order to
determine what API calls are invoked, what arguments are passed in to the
API call, and what actions it takes based on the result of the API call.

When a program wants to invoke a method or a system API call, it !rst
needs to prepare any arguments for the call. At the assembly level, there are
speci!c rules about how to pass arguments to a method or API function.
This is referred to as the calling convention. The rules of the calling conven-
tion are articulated in an application binary interface (ABI). Table 6-2
shows the ABI for Intel-based 64-bit macOS systems.

Table 6-2: The macOS (Intel 64-Bit)
Calling Convention

Item Register

1st argument RDI

2nd argument RSI

3rd argument RDX

4th argument RCX

5th argument R8

6th argument R9

7th+ argument(s) via the stack

Return value RAX

As these rules are consistently applied, malware analysts can use them
to understand exactly how a call is being made. For example, if a method
takes a single parameter, the value of this parameter will always be stored in
the RDI register prior to the call. Once you’ve identi!ed a call in the disas-
sembly by locating the call mnemonic, looking backwards in the assembly
code will reveal the values of the arguments passed to the method or API.
This can often provide valuable insight into the code’s logic, like what URL
a malware sample is attempting to connect to, or the path of a !le it is creat-
ing to infect a system.

Likewise, when the call instruction returns, the application binary inter-
face speci!es that the return value of the invoked function will be stored in
the RAX register. Thus, you’ll often see disassembly immediately following a
call instruction that examines and takes an action based on the result of the
value in RAX. For example, as you’ll see shortly, a malicious sample might not
beacon out to its command and control server for tasking if a function that
checks for network connectivity returns zero (false) in the RAX register.

The objc_msgSend Function
When compiled, invocations of Objective-C methods become calls to
the objc_msgSend function (or a close variant), which routes the original
Objective-C method call to the appropriate object at runtime. As malware

Disassembly and Decompilation 129

analysts, we’re not really interested in the objc_msgSend function itself;
rather, we’d like to discover what Objective-C object and method are being
invoked, as these can shed valuable insight into the sample’s capabilities.
Luckily, by understanding objc_msgSend’s parameters, we can often recon-
struct a representation of the original Objective-C code. Table 6-3 summa-
rizes objc_msgSend’s arguments and return value.

Table 6-3: Calling Convention, in the Context of the objc_msgSend Function

Item Register (for) objc_msgSend

1st argument RDI self: object that the method is being invoked upon

2nd argument RSI op: name of the method

3rd+ argument(s) RDX, RCX, . . . Any arguments for the method

Return value RAX Return value from the method

For example, consider the short snippet of Objective-C code in
Listing 6-1, which constructs a URL object using the NSURL class’s
URLWithString: method.

NSURL* url = [NSURL URLWithString:@"http://www.google.com"];

Listing 6-1: Initializing a URL object via Objective-C

When we disassemble the compiled code (Listing 6-2), we see the
objc_msgSend function.

1 lea rdx, qword [http___www_google_com] ; @"http://www.google.com"
2 mov rsi, qword [0x100008028] ; @selector(URLWithString:)
3 mov rdi, qword [objc_cls_ref_NSURL] ; objc_cls_ref_NSURL
call qword [objc_msgSend]

Listing 6-2: Initializing a URL object, disassembled

Consulting Table 6-3, we see that the objc_msgSend function’s !rst param-
eter, named self, contains a pointer to the object upon which the method
is being invoked. If the method is a class method, this will be a reference
to the class, and in the case of an instance method, self will point to an
instance of the class as an object. Recall that a function’s !rst parameter is
stored in the RDI register. In Listing 6-2 you can see that the self parameter
references the NSURL class (as the method, URLWithString:, discussed shortly, is
a class method) 3.

The second parameter of the objc_msgSend function, named op, is a pointer
to the name of the method invoked. Apple documentation calls this value
a selector, which represents the name of the method as a null-terminated
string. Recall that you can !nd the second parameter of a function call in the
RSI register. In this example, we can see that the parameter is set to a pointer
that references the string URLWithString: 2.

The remaining parameters passed to the objc_msgSend function are
those required by the invoked method. Since the URLWithString: method

130 Chapter 6

takes a single parameter, the disassembly initializes the RDX register (the
third parameter in this case) with a pointer to a string object containing
http://www.google.com 1. Finally, objc_msgSend returns whatever the invoked
method returns. Like any other function or method call, the return value
can be found in the RAX register.

For an in-depth discussion of the objc_msgSend function, as well as
the Objective-C runtime and its internals, consult the Phrack articles
“Modern Objective-C Exploitation Techniques” and “The Objective-C
Runtime: Understanding and Abusing.”3 This wraps up our very brief
discussion on assembly language basics. Armed with a foundational under-
standing of this low-level language and various Objective-C internals, we’ll
now take a deeper look at disassembled binary code.

Disassembly
In this section we’ll discuss various disassembly concepts and illustrate
them with real-world examples taken directly from malicious code. Later
in this chapter we’ll walk through the process of leveraging a fully featured
disassembler to generate and explore a binary’s full disassembly.

It is important to remember that the goal of analyzing a malicious pro-
gram is to understand its general logic and capabilities, not necessarily each
and every assembly instruction. As I noted earlier, focusing on the logic
around method and function calls can often provide an ef!cient means to
gain such an understanding. As such, let’s look at a few examples of disas-
sembled code to illustrate how you can identify such calls, their parameters,
and the API response. I’ve chosen these snippets because they highlight idio-
syncrasies that creep into a disassembly from the higher-level languages used
to write the binary. Note that I’ve abridged them to improve readability.

Objective-C Disassembly
In my experience, Objective-C remains the language of choice for malware
authors who target Mac users. Yet reversing Objective-C code presents
several challenges, such as the widespread use of the objc_msgSend function
discussed earlier in this chapter. Luckily, we can still glean plenty of useful
information from the disassembly.

Komplex is a backdoor with ties to a proli!c Russian APT group.4 It
contains various components, including an installer and a second-stage pay-
load. Taking a peek at the installer reveals multiple calls to the objc_msgSend
function, indicating we’re looking at compiled Objective-C code. Our goal
is to determine the Objective-C objects and methods passed to objc_msgSend
function, as these can help us !gure out the installer’s actions.

In the installer’s main function, we !nd the following code (Listing 6-3):

0x00000001000017De lea rsi, qword [_joiner]
0x00000001000017e5 movabs rdi, 0x20f74

0x0000000100001824 mov qword [rbp-0x90], rdi
...

http://www.google.com

Disassembly and Decompilation 131

0x000000010000182e mov qword [rbp-0x98], rsi
...

0x0000000100001909 mov rax, qword [objc_cls_ref_NSData] 1
0x0000000100001910 mov rsi, qword [0x1001a9428] ; @selector(dataWithBytes:length:)
0x0000000100001917 mov rdi, rax 2
0x000000010000191a mov rdx, qword [rbp-0x98] 3
0x0000000100001921 mov rcx, qword [rbp-0x90]
0x0000000100001928 call objc_msgSend
0x000000010000192d mov qword [rbp-0x60], rax

Listing 6-3: Initializing a NSData object, disassembled (Komplex)

First, we see two local variables (rbp-0x90 and rbp-0x98) being initialized,
the !rst with a hardcoded value of 0x20f74, and the second with the address
of a global variable named _joiner.

Moving on, we then see a reference to the NSData class moved into the
RAX register 1. Two lines later, it is moved into the RDI register 2. We know
that when a function is called, its !rst parameter is stored in the RDI register,
and that for calls to the objc_msgSend function, this parameter is the class or
object upon which a method is to be invoked. Therefore, we now know that
the malware is invoking an NSData class method. But which one?

Well, the second parameter passed to the objc_msgSend function identi-
!es the method, and we know we can !nd it in the RSI register. In the
disassembly, we see the RSI register initialized with a pointer stored at
0x1001a9428. Moreover, the disassembler has annotated this address to let us
know the installer is invoking a method named dataWithBytes:length:, which
belongs to the NSData class.

Next, take a look at the two parameters for this method, which get
passed into the objc_msgSend function via the RDX and RCX registers 3. The RDX
register will contain the value for the dataWithBytes: parameter and is initial-
ized from the local variable rbp-0x98. Recall that this variable contains the
address of a global variable named _joiner. The RCX register holds the value
for the length: parameter and is initialized from the local variable rbp-0x90,
which contains 0x20f74.

From this analysis, we can reconstruct the original Objective-C call as
follows (Listing 6-4):

NSData* data = [NSData dataWithBytes:_joiner length:0x20f74];

Listing 6-4: Reconstructed Objective-C code (Komplex)

The created NSData object is then saved into a local variable found at
rbp-0x60.

Next, we !nd another Objective-C call (Listing 6-5).

0x00000001000017d2 lea rcx, qword [cfstring__tmp_content] ; @"/tmp/content"
0x00000001000017d9 mov edx, 0x1
...
0x0000000100001838 mov dword [rbp-0x9c], edx
...
0x0000000100001848 mov qword [rbp-0xb0], rcx

132 Chapter 6

0x0000000100001931 mov rax, qword [rbp-0x60] ; ret value from dataWithBytes:length:.
0x0000000100001935 mov rsi, qword [0x1001a9430] ; @selector(writeToFile:atomically:) 1
0x000000010000193c mov rdi, rax
0x000000010000193f mov rdx, qword [rbp-0xb0]
0x0000000100001946 mov ecx, dword [rbp-0x9c] 2
0x000000010000194c call objc_msgSend

Listing 6-5: Writing out a file, disassembled (Komplex)

Two more local variables are initialized here, the !rst with a path to a
!le named content in the /tmp directory and the second with the hardcoded
value of 1. Then the NSData object created in the previous snippet of disas-
sembly is loaded into RAX, and then into RDI. As the RDI register holds the
!rst parameter for the objc_msgSend function call, we now know the installer
is invoking a method call on this object.

The method is stored in the RSI register and identi!ed by the disassem-
bler as writeToFile:atomically: 1. The parameters for this method are stored
in the RDX and RCX registers. The former, which corresponds to the writeToFile:
parameter, is initialized from the local variable holding the path /tmp/content.
The latter is a Boolean #ag for the atomically: parameter and is initialized
from the local variable that contained the value 1. As the full 64-bit register is
not needed, the compiler chose to use only the lower 32 bits, which explains
the reference to ECX instead of RCX 2.

From this analysis, we can again reconstruct the original Objective-C
call (Listing 6-6):

[data writeToFile:@"/tmp/content" atomically:1]

Listing 6-6: Reconstructed Objective-C (Komplex)

Combined with our analysis of the previous Objective-C call, we’ve
uncovered the fact that the malware is writing an embedded payload, found
in the global variable named joiner, to the /tmp/content !le. We can con!rm
that indeed joiner contains an embedded (Mach-O) payload by viewing its
contents, which are found at 0x100004120 (Listing 6-7).

_joiner:
0x0000000100004120 db 0xcf ; '.'
0x0000000100004121 db 0xfa ; '.'
0x0000000100004122 db 0xed ; '.'
0x0000000100004123 db 0xfe ; '.'
0x0000000100004124 db 0x07 ; '.'
0x0000000100004125 db 0x00 ; '.'
0x0000000100004126 db 0x00 ; '.'

Listing 6-7: An embedded Mach-O binary (Komplex)

Taking into account Intel’s little-endian format, which speci!es that the
least signi!cant byte of a word is stored at the smallest address, the !rst four
bytes make up the value 0xfeedfacf. This value maps to the MH_MAGIC_64 con-
stant, which indicates the start of a 64-bit Mach-O executable. Continued
analysis of the installer’s disassembly reveals that, once the embedded

Disassembly and Decompilation 133

binary payload has been written to disk, it is executed. Triaging this binary
reveals it is in fact Komplex’s persistent second-stage payload.

Swift Disassembly
Of course, not all malware is written in Objective-C. The Swift programming
language is the trendy new kid on the block, and several macOS malware
specimens have been written in it. Reversing a Swift binary is slightly more dif-
!cult than reversing one written in Objective-C due to factors such as name
mangling and other programming abstractions. Name mangling encodes items
such as method names to ensure they are unique within a compiled binary.
Unfortunately, unless demangled, this greatly impacts the readability of the
item’s name, complicating analysis.

However, modern disassemblers are now able to produce reasonably
understandable disassembly listings from compiled Swift binaries with,
for example, mangled names fully decoded and added as annotations.
Moreover, as the Swift runtime leverages many Objective-C frameworks,
our discussion of the objc_msgSend function is still relevant. In mid-2020,
researchers discovered a new macOS backdoor, which they named Dacls
and attributed to the Lazarus APT Group. Its malicious installer application
was written in Swift. Here we’ll highlight several snippets of its disassembly,
which show the malware initializing and then launching an Objective-C
NSTask object to execute installation commands (Listing 6-8).

0x000000010001e1f1 mov r15, rax
0x000000010001e1f4 movabs rdi, '/bin/bash' 1
0x000000010001e1fe movabs rsi, 'h\x00\x00\x00\x00\x00\x00\xe9'
0x000000010001e208 call imp___stubs__$sSS10FoundationE19_bridgeToObjectiveCSo8NSString
 CyF ; (extension in Foundation):Swift.String._bridgeToObjectiv
 eC() -> __C.NSString 2

0x000000010001e20d mov rbx, rax
0x000000010001e210 mov rsi, qword [0x100045ba0] ; @selector(setLaunchPath:)
0x000000010001e217 mov rdi, r15
0x000000010001e21a mov rdx, rax
0x000000010001e21d call objc_msgSend 3

Listing 6-8: Swift disassembly of an NSTask initialization (Dacls)

This chunk of Swift disassembly bridges a Swift string to an Objective-C
NSString 2. From the disassembly, it is apparent that this string is the path
to a shell: /bin/bash 1. Next, as an Objective-C string, it is passed to the
NSTask’s setLaunchPath: method, which gets invoked via the objc_msgSend func-
tion 3. Though the NSTask object (found in the R15 register) is not visible in
this snippet of disassembly, the method selector setLaunchPath: and its argu-
ment (stored in RAX, as the return of the bridging call) are. Often, knowing
a method name is suf!cient to ascertain the class or object type, due to the
fact that this name can be unique to the class. For example, a quick Google
search of, or consulting Apple’s documentation on, the setLaunchPath:
method reveals it belongs to the NSTask class.

134 Chapter 6

Once the malware has set the NSTask’s launch path to /bin/bash, it initial-
izes the task’s arguments (Listing 6-9).

0x000000010001e273 call swift_allocObject 1
0x000000010001e278 mov rbx, rax
...
0x000000010001e286 mov qword [rax+0x20], '-c' 2
...
0x000000010001e2a4 mov r14, qword [rbp+var_80]
0x000000010001e2a8 mov qword [rbx+0x38], r14
...
0x000000010001e2c0 mov rsi, qword [_$sSSN_10003d0b8] ; type metadata for Swift.
 String ;
0x000000010001e2c7 mov rdi, rbx
0x000000010001e2ca call imp___stubs__$sSa10FoundationE19_bridgeToObjectiveCSo7NSArrayC
 yF ; (extension in Foundation):Swift.Array._bridgeToObjectiveC
 () -> __C.NSArray 3
0x000000010001e2cf mov r13, rax
...
0x000000010001e2da mov rsi, qword [0x100045ba8] ; @selector(setArguments:)
0x000000010001e2e1 mov rdi, r15
0x000000010001e2e4 mov rdx, r13
0x000000010001e2e7 call objc_msgSend 4

Listing 6-9: More Swift disassembly of an NSTask initialization (Dacls)

As you can see, the method creates an object containing various Swift
strings 1, then bridges this to an NSArray 3. This is then passed to the
NSTask’s setArguments: method, which is invoked via the objc_msgSend func-
tion 4. The -c argument 2 instructs bash to treat the following string
as a command. It isn’t easy to !gure out the method’s remaining argu-
ments from this snippet of disassembly, but by using dynamic analysis (as
described in the following chapters) we can passively recover these argu-
ments, as well as determine that they are partially hardcoded within the
binary at 0x0000000100033f70 (Listing 6-10):

0x0000000100033f70 db " ~/Library/.mina > /dev/null 2>&1 && chmod +x
~/Library/.mina > /dev/null 2>&1 && ~/Library/.mina > /dev/null 2>&1", 0

Listing 6-10: Embedded arguments (Dacls)

These hardcoded arguments are pre!xed at runtime with the copy com-
mand (cp) and the name of the malware’s persistent backdoor, SubMenu.nib.
Cumulatively the arguments instruct bash to !rst copy the persistent backdoor
to ~/Library/.mina, set it to be executable, and !nally launch it. To trigger these
actions, the malware invokes the NSTask launch method (Listing 6-11).

0x000000010001e300 mov rdi, qword [rcx+rax]
0x000000010001e304 mov rsi, qword [0x100045bb0] ; @selector(launch) 1
0x000000010001e30b call objc_msgSend 2

Listing 6-11: Disassembly of an NSTask launch (Dacls)

Disassembly and Decompilation 135

As expected, the Objective-C method call is routed through the
objc_msgSend function 2. Helpfully, though, the disassembler has anno-
tated the selector: NSTask’s launch method 1.

At this point, from just these snippets of disassembled Swift code, we’ve
been able to extract the malicious installer’s core logic. Speci!cally, we
determined that a persistent payload (SubMenu.nib) was copied to the
~/Library/.mina directory and then launched.

C/C++ Disassembly
Malware authors occasionally craft Mac malware in non-Apple program-
ming languages such as C or C++. Let’s look at another abridged snippet
of disassembly, this time from a Lazarus Group !rst-stage implant loader
named AppleJeus, originally written in C++.5 The snippet is from a func-
tion named getDeviceSerial, though due to C++ name mangling it shows
up in the disassembler as Z15getDeviceSerialPc.

N O T E Mangled names usually start with Z (or _Z). Following this is the length of the func-
tion name (for example, 15 for the length of getDeviceSerial). The mangled name is
then suf!xed with argument types. For example, a P refers to a pointer and c refers
to a character, meaning the getDeviceSerial function takes a single argument whose
type is character pointer (char *).

As you peruse the rather large chunk of disassembly (Listing 6-12),
!rst observe that the disassembler has extracted the function declaration as
an annotation, which (luckily for us) includes its original name and the num-
ber and format of its parameters. From the demangled name, getDeviceSerial,
let’s assume that this function will retrieve the serial number of the infected
system (though we’ll also validate this). Since the function takes, as its only
parameter, a pointer to a string buffer (char*), it seems reasonable to assume
the function will store the extracted serial number in this buffer so that it is
available to the caller.

__Z15getDeviceSerialPc: // getDeviceSerial(char*)

0x0000000100004548 mov r14, rdi 1

0x0000000100004559 mov rax, qword [_kIOMasterPortDefault]
0x0000000100004560 mov r15d, dword [rax] 2

0x0000000100004563 lea rdi, qword [IOPlatformExpertDevice] ;"IOPlatformExpertDevice"
0x000000010000456a call IOServiceMatching 3

0x000000010000456f mov edi, r15d
0x0000000100004572 mov rsi, rax
0x0000000100004575 call IOServiceGetMatchingService 4

0x000000010000457e mov r15d, eax
0x0000000100004581 mov rax, qword [_kCFAllocatorDefault]
0x0000000100004588 mov rdx, qword [rax]
0x000000010000458b lea rsi, qword [IOPlatformSerialNumber]
0x0000000100004592 xor ecx, ecx

136 Chapter 6

0x0000000100004594 mov edi, r15d
0x0000000100004597 call IORegistryEntryCreateCFProperty 5

0x000000010000459c mov edx, 0x20
0x00000001000045a1 mov ecx, 0x8000100
0x00000001000045a6 mov rdi, rax
0x00000001000045a9 mov rsi, r14
0x00000001000045ac call CFStringGetCString 6

return

Listing 6-12: Disassembly of a getDeviceSerial function (AppleJeus)

First, the function moves its single argument stored in RDI, the output
buffer, into the R14 register, effectively locally saving it 1. It does so because
if the getDeviceSerial function makes any other calls that expect arguments
(which it does), the RDI register will be reinitialized for those other calls.
As you’ll see, at the end of the getDeviceSerial function, this output buffer
is populated with the device’s serial number. Thus, the function must save
this argument into an unused register. The use of such “scratch” registers
to preserve values is quite common, and their annotations often facilitate
the reversing of complex functions.

The function moves a pointer to kIOMasterPortDefault into RAX and deref-
erences it into the R15 register 2.

According to Apple developer documentation, kIOMasterPortDefault is
the default mach port used to communicate with IOKit services.6 (A mach
port is a mechanism to facilitate inter-process communications.) From this
observation, it seems likely that the malware will leverage IOKit to extract
the infected device’s serial number.

Next, we see the getDeviceSerial function make its !rst call into an
Apple API: the IOServiceMatching function 3. Apple notes that this func-
tion, which takes a single parameter, will create and return a dictionary
that facilitates the searching of and matching on a target IOKit service.7 We
know that the RDI register holds the !rst argument of a function or method
call. Just prior to making the call, we see the assembly code initialize this
register with the value of "IOPlatformExpertDevice". In other words, it’s invok-
ing the IOServiceMatching function with the string "IOPlatformExpertDevice".

Once the matching dictionary has been created, the code invokes
another IOKit API, the IOServiceGetMatchingService function 4. Apple docu-
mentation states that this function will !nd the IOService that matches
the speci!ed search criteria.8 For parameters, it expects a master port
and a matching dictionary. The disassembled code moves a value from
the R15 register into the EDI register (the 32-bit part of the RDI register). A
few lines earlier, the code moved kIOMasterPortDefault into the R15 register.
Thus, the code is simply moving kIOMasterPortDefault into the EDI register,
making it the !rst argument for the call to IOServiceGetMatchingService.
Likewise, notice RAX being moved into the RSI register before the call,
as the RSI register is used as the second parameter for function calls.
Because the RAX register holds the result of the call, the RSI register will
contain the matching dictionary from the call to IOServiceMatching. After

Disassembly and Decompilation 137

the call to IOServiceGetMatchingService, an io_service_t service is returned
in the RAX register. As the matching dictionary was initialized with
"IOPlatformExpertDevice", a reference to the IOPlatformExpertDevice IOKit
object will be found and returned. As you’ll see, this object can be queried
for information about the system (platform), including its serial number.

Next, the code sets up the parameters for a call to a system function
that extracts the value of an IOKit registry property: IORegistryEntryCreate
CFProperty 5. This parameter setup begins by loading kCFAllocatorDefault
into RDX, the register used for the third argument. Apple’s documentation
of the function speci!es that this is the memory allocator to use.9 Following
this, the address of the string "IOPlatformSerialNumber" is loaded into the RSI
register. Used for the second argument, this register is the property name
of interest. Next, the 32-bit component of the RCX register (ECX), the fourth
argument, is initialized to zero, as the XORing of one register with itself
sets the register to zero. Finally, before making the call, the value from
R15D (the D indicating the 32-bit part of the R15 register) is moved into EDI,
the 32-bit part of the RDI register. This has the effect of initializing the RDI
parameter with the value of kIOMasterPortDefault previously stored in R15D.
After the call to IORegistryEntryCreateCFProperty, the RAX register will hold the
value of the required property: IOPlatformSerialNumber.

Finally, the function invokes the CFStringGetCString function to con-
vert the extracted property, a CFString object, to a plain, null-terminated
C-string 6. Of course, the parameters must be initialized prior to this
call. The EDX register (the 32-bit part of the RDX) is set to 0x20, which speci!es
the output buffer size. The ECX register (the 32-bit part of the RCX) is set to
kCFStringEncodingUTF8 (0x8000100). The RDI register is set to the value of RAX,
which contains the extracted property value of IOPlatformSerialNumber. Lastly,
the second argument, RSI, is set to R14. Remember that the R14 register contains
the value from RDI passed to getDeviceSerial. Since Apple’s documentation for
CFStringGetCString states that the second argument is the buffer into which to
copy the string, we now know that the parameter passed to the getDeviceSerial
function is indeed an output buffer for a serial number.10

It’s worth noting that although higher-level languages such as C++
require passing the arguments in a speci!ed order, the only requirement at
the assembly level is that the parameters are stored in the appropriate regis-
ters or stack location before a call is made. As a result, you may see instruc-
tions that initialize the arguments “out of order.” For example, here you see
the second argument being set last.

By focusing on the API calls made by the getDeviceSerial function, we
were able to con!rm its functionality: retrieving the infected system’s serial
number (IOPlatformSerialNumber) via IOKit. Moreover, using parameter analy-
sis we were able to determine that the getDeviceSerial function would be
invoked with a buffer for the serial number. Who needs source code, right?

Control Flow Disassembly
So far, our analysis has focused on the logic contained solely within func-
tions, not on the interactions of the functions and the code that invokes them.
Understanding such interactions is important when analyzing malware, as

138 Chapter 6

malicious code will often take decisive actions based on the return value of a
single function. Komplex’s payload provides an illustrative example.

Komplex’s persistent payload contains logic in a function named
__Z19connectedToInternetv (which demangles to connectedToInternet). This aptly
named function checks if an infected host is connected to the internet. If
the host is of#ine, the malware will understandably wait until network con-
nectivity is restored before attempting to connect to its command and control
server for tasking. (This check also doubles as a basic anti-analysis mecha-
nism, based on the assumption that most analysis systems are not connected
to the internet.)

Let’s examine the disassembly of malware code that invokes the
connectedToInternet function and then acts upon its response (Listing 6-13).

0x0000000100005b15:
0x0000000100005b15 call connectedToInternet()
0x0000000100005b1a and al, 0x1
0x0000000100005b1c mov byte [rbp+var_19], al
0x0000000100005b1f test byte [rbp+var_19], 0x1
1 0x0000000100005b23 jz loc_100005b2e
2 0x0000000100005b29 jmp loc_100005b40

3 0x0000000100005b2e:
0x0000000100005b2e mov edi, 0x3c
0x0000000100005b33 call sleep
0x0000000100005b38 mov [rbp+var_3C], eax
4 0x0000000100005b3b jmp 0x0000000100005b15

loc_100005b40:
...

Listing 6-13: Network connectivity check and control flow (Komplex)

First, the malware invokes the connectedToInternet function. As this func-
tion takes no parameters, no register setup is required. Following the call,
the malware checks the return value via a test and a jz (jump zero) instruc-
tion. The test instruction bitwise ANDs two operands (discards the result)
and sets the zero #ag based on the result. Thus, if the connectedToInternet
function returns a zero, the jz instruction will be taken 1, jumping to the
instructions at 0x0000000100005b2e 3. Here, the code invokes the system’s
sleep function before looping back to the instructions at 0x0000000100005b15
to check for connectivity once again 4. Once the connectedToInternet func-
tion returns a non-zero value, an unconditional jump is taken 2, exiting
the loop. In other words, the malware will wait until the system is con-
nected to the internet before continuing on.

Now that we understand the malware’s functionality, we can recon-
struct the logic with the following Objective-C code (Listing 6-14).

while(0x0 == connectedToInternet()) {
 sleep(0x3c);
}

Listing 6-14: Network connectivity check and control flow, reconstructed (Komplex)

Disassembly and Decompilation 139

After walking through these various chunks of disassembly, we can
probably all agree that reading assembly code is rather tedious. Luckily, due
to recent advances in decompiler technologies, there is hope!

Decompilation
You’ve seen how a disassembler can parse a !le and translate the binary
code back into human-readable assembly. Decompilers seek to take this
translation one step further by recreating a source-code level representa-
tion of extracted binary code. This source-code representation can be both
more succinct and readable than assembly, making analysis of unknown
binaries a simpler task. Advanced reverse-engineering tools often contain
both disassembler and decompiler capabilities. Examples of such tools
include Hopper (discussed in the next section), IDA Pro, and Ghidra.

Recall the getDeviceSerial function from the Lazarus Group !rst-stage
implant loader? While the full disassembly of this function is about 50 lines
long, the decompilation is much more succinct, clocking in at roughly 15
lines (Listing 6-15).

int getDeviceSerial(int * arg0) {
 r14 = arg0;
 ...
 r15 = kIOMasterPortDefault;
 rax = IOServiceMatching("IOPlatformExpertDevice");
 rax = IOServiceGetMatchingService(r15, rax);
 if (rax != 0x0) {
 rbx = CFStringGetCString(IORegistryEntryCreateCFProperty(rax,
 @"IOPlatformSerialNumber", kCFAllocatorDefault, 0x0), r14, 0x20,
 kCFStringEncodingUTF8) != 0x0 ? 0x1 : 0x0;
 IOObjectRelease(rax);
 }
 rax = rbx;
 return rax;
}

Listing 6-15: Decompilation of the getDeviceSerial function (AppleJeus)

The decompilation is quite readable, making it relatively easy to under-
stand the logic of this function. For example, we can see that the malware
obtains a reference to the IOPlatformExpertDevice service and then leverages
it to look up the system’s serial number.

Similarly, the connectedToInternet function discussed earlier in the chap-
ter decompiles decently (Listing 6-16). Notice, though, that the decompiler
seems a little confused by the Objective-C syntax, with @class and @selector
keywords remaining in the output. Behind the scenes, this is due to a com-
piler optimization that invokes an optimized version of the objc_msgSend
function called objc_msgSend_fixup. Still, it should be clear that the malware
determines the host’s network connectivity, or lack thereof, via a request to
www.google.com.

www.google.com

140 Chapter 6

int connectedToInternet()
{
 if((@class(NSData), &@selector(dataWithContentsOfURL:), (@class(NSURL),
 &@selector(URLWithString:), @"http://www.google.com")) != 0x0)
 {
 var_1 = 0x1;
 }
 else {
 var_1 = 0x0;
 }
 rax = var_1 & 0x1 & 0xff;
 return rax;
}

Listing 6-16: Decompilation of the connectedToInternet function (Komplex)

Taking into consideration the many bene!ts of decompilation over dis-
assembly, you might be wondering why we bothered discussing disassembly
at all. There are a few reasons why disassembly might still be useful. First,
even the best decompilers occasionally struggle to analyze complex binary
code, such as malware with anti-analysis logic (discussed in Chapter 9).
Disassemblers that simply translate binary code are far less susceptible to
errors. Thus, dropping down to the assembly level code provided by the
disassembler may sometimes be your only option. Second, as we saw in
the decompilation of the getDeviceSerial and connectedToInternet functions,
assembly code concepts such as registers remain present in the code and
are thus relevant to your analysis. While decompilation can greatly simplify
the analysis of binary code, the ability to understand assembly code is (still)
a foundational skill for any malware analyst.

Reverse Engineering with Hopper
So far we’ve discussed the concepts of disassembly and decompilation with-
out mentioning speci!c tools that provide these services. These tools can be
somewhat complex and a bit daunting to the beginner malware analyst. As
such, we’ll brie#y walk through the use of one such tool, Hopper, for binary
analysis. Reasonably priced and designed natively for macOS, Hopper
boasts a powerful disassembler and decompiler that excels at analyzing
Mach-O binaries.11

If you’d rather use another disassembler or decompiler, such as IDA Pro
or Ghidra, the speci!cs of this section may not apply. However, the concepts
we’ll discuss are broadly applicable across most reverse-engineering tools.

Creating a Binary to Analyze
In this brief introduction to Hopper, we’ll disassemble and decompile
Apple’s standard “Hello, World!” Objective-C code, shown in Listing 6-17.

#import <Foundation/Foundation.h>

 int main(int argc, const char * argv[]) {

Disassembly and Decompilation 141

 @autoreleasepool {
 NSLog(@"Hello, World!");
 }
 return 0;
}

Listing 6-17: Apple’s “Hello, World!”

Though trivial, it affords us an example binary suf!cient for illustrating
many of Hopper’s features and capabilities. Compile the code using clang or
Xcode to generate a 64-bit Mach-O binary (Listing 6-18):

% clang main.m -fmodules -o helloWorld

% file helloWorld
helloWorld: Mach-O 64-bit executable x86_64

Listing 6-18: Compiling “Hello, World!”

Loading the Binary
After opening the Hopper application, start the analysis by selecting
File�Open. Choose the Mach-O binary for analysis. In the resulting
loader window, leave the defaults selected and click OK (Figure 6-1).

Figure 6-1: Loader window in Hopper

Hopper will automatically begin its analysis of the binary by parsing
the Mach-O header, disassembling the binary code, and extracting embed-
ded strings, function and method names, and so on. Once its analysis
is complete, Hopper will automatically display the disassembled code at
the binary’s entry point, extracted from the LC_MAIN load command in the
Mach-O header.

Exploring the Interface
Hopper’s interface offers several ways of exploring the data it produces.
On the far right is the inspector view. This is where Hopper displays general

142 Chapter 6

information about the binary being analyzed, including the type of binary,
its architecture and CPU, and its calling convention (Figure 6-2).

Figure 6-2: Basic file information in Hopper

On the far left is a segment selector that can toggle between various
views related to symbols and strings in the binary. For example, the Proc
view shows procedures (functions and methods) that Hopper has identi!ed
during its analysis (Figure 6-3). This includes functions and methods from
the original source code, as well as APIs that the code invokes. For example,
in our “Hello, World!” binary, Hopper has identi!ed the main function and
the call to Apple’s NSLog API.

Figure 6-3: Procedure view in Hopper

The Str view shows the embedded strings that Hopper has extracted
from the binary (Figure 6-4). In our simple binary, the only embedded
string is “Hello, World!”

Figure 6-4: Embedded strings view in Hopper

Disassembly and Decompilation 143

Before diving into any disassembly, it’s wise to peruse the extracted pro-
cedure names and embedded strings, as they are often an invaluable source
of information about the malware’s possible capabilities. Moreover, they
can guide your analysis efforts. If a procedure name or embedded string
looks interesting, click it and Hopper will show you exactly where it’s refer-
enced in the binary.

Viewing the Disassembly
By default, Hopper will automatically display the disassembly of the binary’s
entry point (often the main function). Listing 6-19 shows the disassembly
of the main function in its entirety. Note that the method of compilation
and the compiler version can both impact the disassembly. Most commonly,
addresses (of functions or instructions) may change, though the order of
instructions may vary as well.

main:
0x0000000100003f20 push rbp
0x0000000100003f21 mov rbp, rsp
0x0000000100003f24 sub rsp, 0x20
0x0000000100003f28 mov dword [rbp+var_4], 0x0
0x0000000100003f2f mov dword [rbp+var_8], edi
0x0000000100003f32 mov qword [rbp+var_10], rsi
0x0000000100003f36 call objc_autoreleasePoolPush
0x0000000100003f3b lea rcx, qword [cfstring_Hello__World] ; @"Hello, World!"
0x0000000100003f42 mov rdi, rcx ; argument "format" for method NSLog 1
0x0000000100003f45 mov qword [rbp+var_18], rax
0x0000000100003f49 mov al, 0x0
0x0000000100003f4b call NSLog
0x0000000100003f50 mov rdi, qword [rbp+var_18] ; argument "pool" for method objc_
 autoreleasePoolPop
0x0000000100003f54 call objc_autoreleasePoolPop
0x0000000100003f59 xor eax, eax
0x0000000100003f5b add rsp, 0x20
0x0000000100003f5f pop rbp
0x0000000100003f60 ret

Listing 6-19: “Hello, World!” disassembled by Hopper

Hopper provides helpful annotations, identifying embedded strings
as well as function and method arguments. For example, consider the
assembly code at address 0x0000000100000f42, which moves the RCX register, a
pointer to the “Hello, World!” string, into RDI 1. Hopper has identi!ed this
code as initializing the arguments for a call to NSLog a few lines later.

You’ll often notice that various components of the disassembly are actu-
ally pointers to data elsewhere in the binary. For example, the assembly code
at 0x0000000100000f3b loads the address of the “Hello, World!” string into the
RCX register. Hopper is smart enough to identify the cfstring_Hello__World_
variable as a pointer. Moreover, if you double-click any pointer, Hopper will
jump to the pointer’s address. For example, clicking twice on the cfstring_
Hello__World_ variable in the disassembly takes you to the string object at

144 Chapter 6

address 0x0000000100001008. This string object of type CFConstantString con-
tains pointers, too, and double-clicking those takes you to the speci!ed
address.

Note that Hopper also tracks backwards cross-references. For example,
it has identi!ed that the string bytes at address 0x0000000100000fa2 are cross-
referenced by the cfstring_Hello__World_ variable. That is to say, the cfstring
_Hello__World_ variable contains a reference to the 0x0000000100000fa2 address.
Cross-references like these greatly facilitate static analysis of the binary code;
if you notice a string of interest, you can simply ask Hopper where in the
code that string is referenced. To view such cross-references, CTRL-click the
address or item and select References To. Alternatively, select the address or
item and press X. For example, say we wanted to see where in the disassem-
bly the “Hello, World!” string object is referenced. We’d !rst select the string
object at address 0x0000000100001008, CTRL-click to bring up the context
menu, and click References to cfstring_Hello__World (Figure 6-5).

Figure 6-5: Selecting the option to view cross-references to the “Hello, World!” string.

This should bring up the Cross References window for that item
(Figure 6-6).

Figure 6-6: Cross-references to the “Hello, World!” string

Now you can see that this string has only one cross-reference: the code
at address 0x0000000100000f3b, which falls within the main function. Double-
click it to jump to that location in the code.

Disassembly and Decompilation 145

Hopper also creates cross-references for functions, methods, and API
calls, allowing you to easily determine where in the code these are invoked.
For example, the Cross References window in Figure 6-7 tells us that the
NSLog API is invoked within the main function at 0x0000000100000f4b.

Figure 6-7: Cross-references to the NSLog function

Cross-references greatly facilitate analysis and can ef!ciently lead to an
understanding of the binary’s functionality or capabilities. For example,
imagine you’re analyzing a suspected malware sample and want to uncover
the address of its command and control server. In Hopper’s Proc view, you
can locate APIs, such as Apple networking methods, which are often used
by the malware to connect to its server. From the Proc view, follow cross-
references to understand how these APIs are being invoked (for example,
with the URL or IP address of the command and control server).

When bouncing around in Hopper, you’ll often want to quickly return
to a previous spot of analysis. Luckily, the ESCAPE key will take you back to
where you just were.

Changing the Display Mode
So far, we’ve stayed in Hopper’s default display mode, Assembly mode. As
the name suggests, this mode displays the disassembly of binary code. You
can toggle the display mode using a segment control found in Hopper’s
main toolbar (Figure 6-8).

Figure 6-8: Display modes in Hopper

146 Chapter 6

Hopper’s supported display modes include the following:

• Assembly (ASM) mode: The standard disassembly mode, in which
Hopper displays a binary’s assembly instructions.

• Control Flow Graph (CFG) mode: A mode that breaks down proce-
dures (functions) into code blocks and illustrates the control #ow
between them.

• Pseudocode mode: Hopper’s decompiler mode, in which a source-
code-like or pseudocode representation is generated.

• Hexadecimal mode: The raw hex bytes of the binary.

Of the four display modes, the pseudocode mode is arguably the
most powerful. To enter this mode, !rst select a procedure, and then click
the third button in the Display modes segment control. This will instruct
Hopper to decompile the code in the procedure in order to generate a
pseudocode representation of it. For our simple “Hello, World!” program, it
does a lovely job (Listing 6-20):

int _main(int arg0, int arg1) {
 var_18 = objc_autoreleasePoolPush();
 NSLog(@"Hello, World!");
 objc_autoreleasePoolPop(var_18);
 return 0x0;
}

Listing 6-20: “Hello, World!” decompiled

After taking into account that @autoreleasepool blocks are compiled into
paired objc_autoreleasePoolPush and objc_autoreleasePoolPop calls, the decom-
pilation looks quite similar to the original source code (Listing 6-21).

#import <Foundation/Foundation.h>

 int main(int argc, const char * argv[]) {
 @autoreleasepool {
 NSLog(@"Hello, World!");
 }
 return 0;
}

Listing 6-21: The original “Hello, World!” source code for comparison

For a more comprehensive guide to using and understanding Hopper,
consult the application’s of!cial tutorial.12

Up Next
Armed with a solid understanding of static analysis techniques, ranging
from basic !le type identi!cation to advanced decompilation, we’re now
ready to turn our attention to methods of dynamic analysis. As you’ll see,

Disassembly and Decompilation 147

dynamic analysis often provides a more ef!cient way of understanding mal-
ware. Ultimately though, static and dynamic analysis are complementary,
and you’ll probably !nd yourself combining them.

Endnotes
 1 Patrick Wardle, “Arm’d and Dangerous,” BlackHat 2021 presentation,

https://www.blackhat.com/us-21/brie!ngs/schedule/#armd-and-dangerous
-23772/ and “Arm’d & Dangerous: An Introduction to Analysing ARM64
Malware Targeting macOS,” Objective-See, October 7-8, 2011, https://
vblocalhost.com/uploads/VB2021-Wardle.pdf.

 2 Randall Hyde, Art of Assembly Language, second edition (No Starch
Press, 2010), https://nostarch.com/assembly2.htm; Kris Kaspersky, Hacker
Disassembling Uncovered, second edition (A-List Publishing, 2007), https://
www.amazon.com/Hacker-Disassembling-Uncovered-Kris-Kaspersky/dp/
1931769648/; Eldad Eilam, Reversing: Secrets of Reverse Engineering (Wiley,
2005), https://www.amazon.com/Reversing-Secrets-Engineering-Eldad-Eilam/
dp/0764574817/.

 3 Nemo, “Modern Objective-C Exploitation Techniques,” Phrack 69 (May
6, 2016), http://www.phrack.org/issues/69/9.html; Nemo, “The Objective-C
Runtime: Understanding and Abusing,” Phrack 66 (November 6, 2009),
http://www.phrack.org/issues/66/4.html.

 4 Dani Creus, Tyler Halfpop, and Robert Falcone, “Sofacy’s ‘Komplex’ OS
X Trojan,” Unit 42 (September 26, 2016), https://unit42.paloaltonetworks.com/
unit42-sofacys-komplex-os-x-trojan/.

 5 Patrick Wardle, “Lazarus Group Goes ‘Fileless’,” Objective-See (December
3, 2019), https://objective-see.com/blog/blog_0x51.html.

 6 “kIOMasterPortDefault,” Apple Developer Documentation, https://developer
.apple.com/documentation/iokit/kiomasterportdefault/.

 7 “IOServiceMatching,” Apple Developer Documentation, https://developer
.apple.com/documentation/iokit/1514687-ioservicematching/.

 8 “IOServiceGetMatchingService,” Apple Developer Documentation, https://
developer.apple.com/documentation/iokit/1514535-ioservicegetmatchingservice/.

 9 “IORegistryEntryCreateCFProperty,” Apple Developer Documentation,
https://developer.apple.com/documentation/iokit/1514293-ioregistryentrycreate
cfproperty/.

 10 “CFStringGetCString,” Apple Developer Documentation, https://developer
.apple.com/documentation/corefoundation/1542721-cfstringgetcstring/.

 11 Hopper, https://www.hopperapp.com/. Free demo of Hopper, https://www
.hopperapp.com/download.html.

 12 Hopper of!cial tutorial, https://www.hopperapp.com/tutorial.html.

https://www.blackhat.com/us-21/briefings/schedule/#armd-and-dangerous-23772/
https://www.blackhat.com/us-21/briefings/schedule/#armd-and-dangerous-23772/
https://vblocalhost.com/uploads/VB2021-Wardle.pdf
https://vblocalhost.com/uploads/VB2021-Wardle.pdf
https://nostarch.com/assembly2.htm
https://www.amazon.com/Hacker-Disassembling-Uncovered-Kris-Kaspersky/dp/1931769648/
https://www.amazon.com/Hacker-Disassembling-Uncovered-Kris-Kaspersky/dp/1931769648/
https://www.amazon.com/Hacker-Disassembling-Uncovered-Kris-Kaspersky/dp/1931769648/
https://www.amazon.com/Reversing-Secrets-Engineering-Eldad-Eilam/dp/0764574817/
https://www.amazon.com/Reversing-Secrets-Engineering-Eldad-Eilam/dp/0764574817/
http://www.phrack.org/issues/69/9.html
http://www.phrack.org/issues/66/4.html
https://unit42.paloaltonetworks.com/unit42-sofacys-komplex-os-x-trojan/
https://unit42.paloaltonetworks.com/unit42-sofacys-komplex-os-x-trojan/
https://objective-see.com/blog/blog_0x51.html
https://developer.apple.com/documentation/iokit/kiomasterportdefault/
https://developer.apple.com/documentation/iokit/kiomasterportdefault/
https://developer.apple.com/documentation/iokit/1514687-ioservicematching/
https://developer.apple.com/documentation/iokit/1514687-ioservicematching/
https://developer.apple.com/documentation/iokit/1514535-ioservicegetmatchingservice/
https://developer.apple.com/documentation/iokit/1514535-ioservicegetmatchingservice/
https://developer.apple.com/documentation/iokit/1514293-ioregistryentrycreatecfproperty/
https://developer.apple.com/documentation/iokit/1514293-ioregistryentrycreatecfproperty/
https://developer.apple.com/documentation/corefoundation/1542721-cfstringgetcstring
https://developer.apple.com/documentation/corefoundation/1542721-cfstringgetcstring
https://www.hopperapp.com/
https://www.hopperapp.com/download.html
https://www.hopperapp.com/download.html
https://www.hopperapp.com/tutorial.html

